
Parallel Spatial Direct Numerical Simulation of

Boundary-Layer Flow Transition on IBM SP1 �

Ulf R. Hanebutte
1

Ronald D. Joslin
2

Mohammad Zubair
3

1 Reactor Analysis Division

Argonne National Laboratory

Argonne, IL 60439

2 NASA Langley Research Center

Hampton, VA 23681

3 International Business Machines Corporation

Thomas J. Watson Research Center

Yorktown Heights, NY 10598

Abstract

The spatially evolving disturbances that are associ-

ated with laminar-to-turbulent transition in three-

dimensional boundary-layer 
ows are computed with

the PSDNS code on an IBM SP1 parallel supercom-

puter. By remapping the distributed data structure

during the course of the calculation, optimized se-

rial library routines can be utilized that substantially

increase the computational performance. Although

the remapping incurs a high communication penalty,

the parallel e�ciency of the code remains above 40

percent for all performed calculations. By using ap-

propriate compile options and optimized library rou-

tines, the serial code achieves 52{56 M
ops on a sin-

gle node of the SP1 (45 percent of theoretical peak

performance). The actual performance of the PSDNS

code on the SP1 is evaluated with a \real world" sim-

ulation that consists of 1.7 million grid points. Com-

parisons to the Cray Y/MP and Cray C-90 are made

for this large scale simulation.

�This research was supported by the National Aero-

nautics and Space Administration under NASA Contract

No. NAS1-19480 while the �rst and third author were
in residence at the Institute for Computer Applications

in Science and Engineering (ICASE), NASA Langley Re-

search Center, Hampton, VA 23681.

1 Introduction

In a recent review article, Fischer and Patera [3] sum-

marize current work in the area of parallel simulation

of viscous incompressible 
ows. However, a discus-

sion of parallel three-dimensional (3D) spatial direct

numerical simulation (DNS) algorithms for laminar-

to-turbulent transition (the subject of this paper) is

not included in their review article.

This paper summarizes our research e�ort on the

IBM SP1 as a follow-up to the work by Joslin and

Zubair [8], in which the performance of the parallel

spatial direct numerical simulation (PSDNS) code on

the the relatively small and slow INTEL iPSC/860

computer was analyzed. A detailed report on the

performance and scalability of the PSDNS code on

the IBM SP1 is given in [5].

2 Parallel Computing Envi-

ronment

The IBM SP1 [4] scalable parallel computer utilized

in the presented performance study consists of 128

processing nodes. Each node is essentially an IBM

RS/6000 model 370 workstation with a clock rate of

62.5 MHz. The local memory is 128 Mb, and the

1



processor data and instruction cache is 32 Kb each.

The individual nodes are connected by a multistage

network that consists of high-performance switches

(50�sec latency, 8.5 Mb bandwidth); each switch can

support up to 16 nodes. The peak performance ob-

tained by performing one multiplication and one ad-

dition on 64-bit 
oating point numbers per clock cy-

cle is 125 M
ops for each processing node. How-

ever, in practice, a FORTRAN code delivers 15{75

M
ops. Although the next-generation parallel com-

puter from IBM, called the SP2 [11], is identical to the

SP1 architecture, its node performance has more than

doubled and the communication network bandwidth

has increased fourfold. For the SP2, the increase in

communication bandwidth relative to the computing

performance will provide a better balanced system,

which should further improve the performance results

of the presented code. The access to Argonne's SP1

is controlled by a scheduler, which ensures that the

requested node partition is operated in a dedicated

mode.

3 Parallel Application

The physical domain of a boundary layer 
ow with an

in
ow disturbance is graphically shown in Figure 1.

With the PSDNS code the spatially evolving distur-

bances that are associated with laminar-to-turbulent

transition in three-dimensional boundary-layer 
ows

are computed. The interested reader is referred to

references [8] and [9] for algorithmic details of the

spatial DNS code.

The PSDNS code developed by Joslin and Zubair

[8] has been ported to the SP1 with only minor

changes. The original parallel code is based on

the message-passing paradigm with explicit data dis-

tribution, which enables good portability among a

broad class of parallel computers. In the PSDNS

code, the data are distributed among the np pro-

cessors in block form with a z-mapping. That is,

the 3D data are partitioned into np blocks that con-

tain nz=np two-dimensional (2D) planes of nxny data

items each. To perform local FFT's in the spanwise

direction nz, the data must be remapped. As indi-

cated in Figure 2, an x-mapping allows the utilization

of optimized serial FFT library routines [7] in the

z direction. The INTEL implementation of the PS-

DNS code relies on the xor algorithm [2] for the global

data exchange; the IBM implementationmakes use of

a global index routine provided by the AIX-parallel

environment [6]. As shown in the study by Joslin

and Zubair, a signi�cant performance gain can be

achieved by utilizing a machine-speci�c basic linear

algebra subprogram (BLAS) level 3 routine for the

matrix by matrix multiplication. Because this rou-

tine is also available on the IBM as part of the ESSL

library [7], the advantage can also be taken in the

present implementation. The performance of the ap-

plication code is further improved through appropri-

ate selection of the compile options. As a result, the

run time of the serial code can be reduced by a factor

of 2.3 compared with a compilation without any op-

tions. For a small test problem (for which Joslin and

Zubair [8] obtained 189 M
ops on the Cray Y/MP

and 5 M
ops on a single node of the iPSC/860), a

single node of the SP1 delivers 52.5 M
ops for the

double-precision (i.e., 64-bit) computation.

Buffer
domain

➡

∞

OutflowInflow
➠ ➠

x

y

z

Inflow ➠

y ⇒ ∞

Outflow➠

Figure 1: Physical Domain.

4 Performance Study

Although thousands of time steps are required for a

single simulation, performance �gures for only one

time step of the PSDNS code are presented here.

Performance �gures for one time step are su�cient

because the workload for each time step is constant

throughout the simulation.

2



P
0 1

P P
2

P
3

P
0

ny

n

nx

z

P

P

P

1

2

3

Figure 2: Global remapping results in local FFT's in spanwise direction.

Figure 3: Computational costs for test suite.

Performance data are collected for the serial code

on a single node of the SP1 and for the parallel code

on up to 64 processing nodes. The chosen problem

dimensions are representative of actual simulations

that are currently performed on Cray-class super-

computers. The wall-normal dimension is �xed at

41 grid points and the streamwise direction consists

of 128 grid points. The spanwise dimension is var-

ied from 8 to 128 Fourier modes in powers of 2. For

brevity, the results for varied streamwise dimension

can not be given here, these results can be found in

[5]. The PSDNS code is instrumented with a set of

timers to record separate performance data for dif-

ferent parts of the computation (the total and four

dominating algorithmic kernels) and the communica-

tion. These measurements are wall-clock time. By

including the idle time that results from the neces-

sary synchronization points of the code in the time

Figure 4: Communication costs for test suite.

data, processor-independent performance �gures can

be obtained. Processor idle time is discussed below in

conjunction with the large simulation for which the

small serial fraction of the PSDNS code is experimen-

tally determined.

In Figure 3 the computational times for a single

time step of the test suite are given in double loga-

rithmic graphs. The associated communication times

are given in Figure 4. The excellent scaling of the

code on the SP1 can be observed immediately. How-

ever, large communication costs relative to the com-

putation costs are incurred because of the unbalanced

architecture of the current SP1 (ie., network perfor-

mance lags behind compute performance of process-

ing nodes) on the one hand and the algorithmic com-

munication penalty on the other hand. The commu-

nication penalty must be incurred in order to utilize

highly optimized serial FFT routines in the spanwise

3



direction. The good scaling of the communication

cost with respect to the number of processors is note-

worthy because the communication that occurs in the

PSDNS code involves a complete exchange, which

represents a stringent test to the communication net-

work.

Figure 5: Speedup of test suite based on com-

plete calculation.

Figure 6: Speedup of test suite based on compu-

tation only.

The speedup of a parallel code for �xed-size prob-

lems is an important performance metric. In Fig-

ure 5, the actual speedup of the complete calculation

is given. The performance of the algorithm can be

improved by scaling the problem size by either in-

creasing the number of spanwise grid points or in-

creasing the number of streamwise grid points. How-

ever, the code is less sensitive to changes in the size of

the streamwise dimension than it is to changes in the

number of spanwise grid points. For all test cases, the

parallel e�ciency of the PSDNS code stays above 40

percent, even when 64 processing nodes are utilized.

A theoretical speedup metric can be obtained by

ignoring all communication costs. This metric is

given in Figures 6. A superlinear speedup is observed.

The superlinear theoretical speedup seen for the large

problems is not a surprise. The good scalability of the

algorithm, combined with the better memory access

of the local portion of the distributed data structure

is an obvious explanation.

5 Large Scale Simulation

The nonlinear evolution of a cross
ow vortex packet

on a swept wing has been computed with the spatial

DNS code described by Joslin and Street [10]. Be-

cause this study required substantial computational

resources (i.e., approximately 125 CPU hours on a

Cray-2 with a single processor), it is representative of

a large-scale simulation. For the SP1 compatible sim-

ulation, a grid with 896 streamwise, 61 wall-normal,

and 32 spanwise grid points was used. Thus, the com-

putational grid contains over 1.7 million grid points.

The Cray Y/MP performs one time step of this sim-

ulation in 54 seconds and delivers 240 M
ops. There-

fore, the computational expense of one time step is

12 960 M
op.

The large core memory of the SP1 allows a problem

of the same size to be computed on as few as eight

processing nodes. The computational costs of the PS-

DNS algorithm for 8, 16, and 32 nodes of the SP1 are

presented in Figure 7. The dashed line gives the total

time required by the algorithm to perform one time

step. If we compare these SP1 timings with the times

required by a single node of the Cray Y/MP and Cray

C-90 (marked with solid squares in the same plot) we

see that the PSDNS code is highly competitive with

these serial supercomputer performances for as few as

8 and 32 processing nodes of the SP1, respectively.

The actual measured execution time, which in-

cludes communication and idle time, is given in Ta-

ble 1 for 8, 16, and 32 nodes of the SP1. An idealized

execution time can be obtained by subtracting those

times that each processing node spends idle or in com-

munication. Because the serial part of the algorithm

is performed only on the �rst node, two idealized

times must be recorded; one value for the �rst node

4



Table 1: Performance of large simulation on 8, 16, and 32 Nodes of SP1

Number of Time, sec Performance, M
ops Executable

processors Actual Idealized Actual Idealized code,

np node Mb

1 2{np Per proc. Total Per proc. Total

8 53.75 32.4 29.1 30 241 55 440 79

16 29.75 17.7 14.5 27 436 55 880 60

32 18.75 10.2 7.1 22 691 56 1760 50

and another for the remaining processing nodes. The

performance of the PSDNS code (in M
ops), based

on the actual time and the idealized time, is given

in Table 1. The idealized performance of 55 M
ops

per processor is noteworthy. Recall that even though

the peak performance of a single node is 128 M
ops,

15{75 M
ops are generally observed for actual ap-

plications. The last column of Table 1 shows the

memory requirements of the executable code; these

numbers show that the code is far from reaching the

local memory limit of 128 Mb. A performance sum-

mary for the communication part of the algorithm is

given in Table 2. Here, the reported bandwidth rep-

resents a measured value which includes the message

startup costs.

By using the idealized execution times for node 1

and for nodes 2{np in Table 1 (the idealized execu-

tion time excludes all idle time and communication

costs), one can determine experimentally the serial

and parallel fractions of the PSDNS algorithm. The

di�erence between the two execution times is the time

spent in the serial part of the parallel algorithm. If

we multiply the execution time of node 2 by the num-

ber of processors, we obtain the execution time of the

parallel portion. In this context, total execution time

is equal to the time spent by all processing nodes

combined. If we normalize the time spent in the se-

rial and parallel portions of the algorithm with the

total execution time we obtain the serial fraction s

and the parallel fraction p, respectively. Surprisingly,

the serial fraction is only 1.4 percent, and the parallel

fraction is 98.6 percent of the total. Amdahl's law [1]

provides a theoretical speedup that is derived from

these two quantities:

Sp =
1

s + p

np

For 8, 16, and 32 processing nodes, the theoretical

speedup Sp of the PSDNS code is 7.29, 13.22, and

22.32, respectively. In the limit of np ! 1, the

speedup asymptotically reaches the value 1=s. Even

though the parallel granularity of the PSDNS code

is restricted for this problem to 32 processing nodes,

the theoretical maximum speedup is 71.

Figure 7: Computational costs for large simu-

lation: IBM SP-1 versus Cray Y/MP and Cray

C-90.

6 Conclusions

The expectations raised in reference [8] for the per-

formance of the PSDNS code on a larger and more

powerful distributed memory machine may be real-

ized with its implementation on the SP1. In reference

[8], due to hardware limitations, only a vague esti-

mate for the performance of a large-scale simulation

on a 32-node INTEL iPSC/860 with su�cient core

memory was given. Joslin and Zubair concluded that

5



Table 2: Total Data Exchange for Single Iteration Step of Large Simulation

Number of Comm., Message Bandwidth

processors sec Volume, Size, Total, Per Processor,

np Mb Mb Mb/sec Mb/sec

8 19.0 595 0.208 63 7.9

16 11.0 638 .052 116 7.3

32 7.5 659 .013 176 5.5

the execution time for the PSDNS code on the 32-

node iPSC/860 would be twice the time required by

a Cray supercomputer. In this work, we have shown

that only eight nodes of the more powerful SP1 are

needed to perform such a large-scale simulation in the

same amount of time as required by a Cray Y/MP.

Furthermore, the utilization of 32 processing nodes

on the SP1 reduces the execution time to roughly

one-third. Both the parallel e�ciency of the PSDNS

code (above 40 percent for all performed calculations)

on the SP1 and the high serial performance of 52{56

M
ops on a single SP1 node (45 percent of theoretical

peak performance) contribute to this success. On 32

processing nodes of the SP1, the PSDNS code is also

highly competitive in comparison with the advanced

Cray C-90 on large-scale simulations.

Acknowledgments

The authors gratefully acknowledge use of the Ar-

gonne National Laboratory High-Performance Com-

puting Research Facility (HPCRF). The HPCRF is

funded principally by the U.S. Department of Energy

O�ce of Scienti�c Computing.

References

[1] Amdahl, G. (1967). Validity of the single-

processor approach to achieving large scale com-

puting capabilities. Proceedings of the AFIPS

Conference, 483{485.

[2] Bokhari, S.H. (1991). Complete Exchange on

the iPSC/860. ICASE Report No. 91-4.

[3] Fischer, P.F., and Patera, A.T. (1994).
Parallel simulation of viscous incompressible


ows. Annu. Rev. Fluid. Mech., 26, 483{527.

[4] Gropp, W., Lusk, E., and Pieper, S.C.
(1994). Users Guide for the Argonne National

Laboratory IBM SP1. Argonne National Labo-

ratory.

[5] Hanebutte, U.R., Joslin, R.D., and
Zubair, M. (1994). Scalability Study of Par-

allel Spatial Direct Numerical Simulation Code

on IBM SP1 Parallel Supercomputer. ICASE Re-

port No. 94-80. Submitted to J Sci. Comp.

[6] IBM Parallel Programming Reference,
AIX Parallel Environment, Release 1.0. SH26-

7228-00, (1993).

[7] IBM Guide and Reference, Engineering and
Scienti�c Subroutine Library, Version 2. SH23-

0526-00, (1992).

[8] Joslin, R.D., and Zubair, M. (1993). Paral-
lel Spatial Direct Numerical Simulations on the

Intel iPSC/860 Hypercube. ICASE Report No.

93-53. J. Sci. Comp., Vol. 9, 1994.

[9] Joslin, R.D., Street, C., and Chang, C.-L.
(1993). Spatial DNS of Boundary-Layer Tran-

sition Mechanisms: Validation of PSE Theory.

Theor. and Comp. Fluid Dyn. 4(6), 271{288.

[10] Joslin, R.D., and Street, C. (1994).
The Role of Stationary Cross
ow Vortices in

Boundary-Layer Transition on Swept Wings.

Phys. Fluids A, Vol. 6, No. 10, 1994.

[11] Saini, S. (1994). The IBM SP2: Hardware,

Software, Porting and Optimization Overiew.

Numerical Aerodynamics Simulation Program,

NASA Ames Research Center, NAS User Semi-

nar, July 27, 1994.

6


